
Extension & Torsion Springs  (Chapter 10) 



Extension Springs 

 Extension springs are similar to compression springs within the 

body of the spring. 

 To apply tensile loads, hooks are needed at the ends of the 

springs. 

 Some common hook types: 
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Normal Stress in the Hook vs. Shear Stress in Body 

 In a typical hook, a critical stress location is at point A, where there 

is bending and axial loading. 

 

 

 (K)A is a bending stress-correction factor for curvature 
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Stress in the Hook 

 Another potentially critical stress location is at point B, where 

there is primarily torsion. 

 

 

 (K)B is a stress-correction factor for curvature. 
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Close-wound Extension Springs 

 Extension springs are often made with coils in contact with one 

another, called close-wound. 

 Including some initial tension in close-wound springs helps hold 

the free length more accurately. 

 The load-deflection curve is offset by this initial tension Fi 
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Terminology of Extension Spring Dimensions 

 The free length is measured inside the end hooks. 

 

 The hooks contribute to the spring rate.  This can be handled by 

obtaining an equivalent number of active coils. 
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Helical Spring: Coiled Extension Spring 

 Similar to compressions springs, but opposite direction 

 Equilibrium forces at cut section anywhere in the body of the 

spring indicates direct shear and torsion 
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Stresses in Helical Springs 

 Torsional shear and direct shear 

 Additive (maximum) on inside fiber of 

cross-section  

 

 

 Substitute terms 
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Stresses in Helical Springs 
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Curvature Effect 

 Stress concentration type of effect on inner fiber due to curvature 

 Can be ignored for static, ductile conditions due to localized cold-

working 

 Can account for effect by replacing Ks with Wahl factor or 

Bergsträsser factor which account for both direct shear and 

curvature effect 

 

 

 

 

 

 Cancelling the curvature effect to isolate the curvature factor 
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Deflection of Helical Springs 
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If C >> 1 

𝑦 =
𝐹 − 𝐹𝑖
𝑘

 y>0 , only if F>Fi 



Initial Tension in Close-Wound Springs 

 Initial tension is created 

by twisting the wire as it 

is wound onto a mandrel. 

 When removed from the 

mandrel, the initial 

tension is locked in 

because the spring cannot 

get any shorter. 

 The amount of initial 

tension that can routinely 

be incorporated is shown. 

 The two curves bounding 

the preferred range is 

given by 
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Guidelines for Maximum Allowable Stresses 

 Recommended maximum allowable stresses, corrected for 

curvature effect, for static applications is given in Table 10–7. 
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Helical Coil Torsion Springs 

 Helical coil springs 

can be loaded with 

torsional end loads. 

 Special ends are used 

to allow a force to be 

applied at a distance 

from the coil axis. 

 Usually used over a 

rod to maintain 

alignment and provide 

buckling resistance. 
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End Locations of Torsion Springs 

 Terminology for locating relative positions of ends is shown. 

 The initial unloaded partial turn in the coil body is given by 

 

 The number of body turns Nb will be the full turns plus the initial 

partial turn. 
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End Locations of Torsion Springs 

 Commercial tolerances on relative end positions is given in Table 

10–9 
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Stress in Torsion Springs 

 The coil of a torsion spring experiences bending stress (despite the 

name of the spring). 

 Including a stress-correction factor, the stress in the coil can be 

represented by 

 

 The stress-correction factor at inner and outer fibers has been 

found analytically for round wire to be  

 

 

 Ki is always larger, giving the highest stress at the inner fiber. 

 With a bending moment of M = Fr, for round wire the bending 

stress is 
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Spring Rate for Torsion Springs 

 Angular deflection is commonly expressed in both radians and 

revolutions (turns). 

 If a term contains revolutions, the variable will be expressed with a 

prime sign. 

 The spring rate, if linear, is 

 

 

 

where moment M can be expressed as Fl or Fr. 
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Deflection in the Body of Torsion Springs 

 Use Castigliano’s method to find the deflection in radians in the 

body of a torsion spring. 

 

 

 Let M = Fl = Fr, and integrate over the length of the body-coil 

wire.  The force F will deflect through a distance rq. 

 

 

 Using I for round wire, and solving for q, 
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Deflection in the Ends of Torsion Springs 

 The deflection in the ends of the spring must be accounted for. 

 The angle subtended by the end deflection is obtained from 

standard cantilever beam approach. 
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Deflection in Torsion Springs 

 The total angular deflection is obtained by combining the body 

deflection and the end deflection. 

 With end lengths of l1 and l2, combining the two deflections 

previously obtained gives, 
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Equivalent Active Turns 

 The equivalent number of active turns, including the effect of the 

ends, is 
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Spring Rate in Torsion Springs 

 The spring rate, in torque per radian 

 

 

 The spring rate, in torque per turn 

 

 

 To compensate for the effect of friction between the coils and an 

arbor, tests show that the 10.2 should be increased to 10.8. 

 

 

 Expressing Eq. (10–47) in revolutions, and applying the same 

correction for friction, gives the total angular deflection as 
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Decrease of Inside Diameter 

 A torsion spring under load will experience a change in coil 

diameter. 

 If the spring is over a pin, the inside diameter of the coil must not 

be allowed to decrease to the pin diameter. 

 The angular deflection of the body of the coil, extracted from the 

total deflection in Eq. (10–52), is 

 

 

 The new helix diameter D' of a deflected coil is  

 

 

 The new inside diameter is  
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Decrease of Inside Diameter 

 The diametral clearance D between the body coil and the pin of 

diameter Dp is  

 

 

 Solving for Nb,  

 

 

 This gives the number of body turns necessary to assure a 

specified diametral clearance. 
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Static Strength for Torsion Springs 

 To obtain normal yield strengths for spring wires loaded in 

bending, divide values given for torsion in Table 10–6 by 0.577 

(distortion energy theory).  This gives 
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Fatigue Strength for Torsion Springs 

 The Sines method and Zimmerli data were only for torsional 

stress, so are not applicable. 

 Lacking better data for endurance limit in bending, use Table 10–

10, from Associated Spring for torsion springs with repeated load, 

to obtain recommended maximum bending stress Sr. 
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Fatigue Strength for Torsion Springs 

 Next, apply the Gerber criterion to obtain the endurance limit.   

 Note that repeated loading is assumed. 

 

 

 

 This accounts for corrections for size, surface finish, and type of 

loading, but not for temperature or miscellaneous effects. 
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Fatigue Factor of Safety for Torsion Springs 

 Applying the Gerber criterion as usual from Table 6–7, with the 

slope of the load line r = Ma/Mm, 

 

 

 

 

 

 Or, finding nf directly using Table 6–7, 
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